- measurable cardinal
- liczba kardynalna mierzalna
English-Polish dictionary for engineers. 2013.
English-Polish dictionary for engineers. 2013.
Measurable cardinal — In mathematics, a measurable cardinal is a certain kind of large cardinal number. Contents 1 Measurable 2 Real valued measurable 3 See also 4 References … Wikipedia
Cardinal mesurable — En mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous ensemble ; cette propriété fait qu un tel cardinal est un grand cardinal. Sommaire 1 Définitions et propriétés de grand cardinal 2… … Wikipédia en Français
Cardinal point (optics) — For other uses, see Cardinal point (disambiguation). In Gaussian optics, the cardinal points consist of three pairs of points located on the optical axis of an ideal, rotationally symmetric, focal, optical system. For ideal systems, the basic… … Wikipedia
Large cardinal property — In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very large (for example, bigger than aleph zero … Wikipedia
Woodin cardinal — In set theory, a Woodin cardinal (named for W. Hugh Woodin) is a cardinal number λ such that for all : f : λ rarr; λthere exists:κ < λ with { f (β)|β … Wikipedia
Strongly compact cardinal — In mathematical set theory, a strongly compact cardinal is a certain kind of large cardinal number; their existence can neither be proven nor disproven from the standard axioms of set theory.A cardinal kappa; is strongly compact if and only if… … Wikipedia
Huge cardinal — In mathematics, a cardinal number κ is called huge if there exists an elementary embedding j : V → M from V into a transitive inner model M with critical point κ and Here, αM is the class of all sequences of length α whose elements are in M … Wikipedia
List of large cardinal properties — This page is a list of some types of cardinals; it is arranged roughly in order of the consistency strength of the axiom asserting the existence of cardinals with the given property. Existence of a cardinal number κ of a given type implies the… … Wikipedia
Strong cardinal — In set theory, a strong cardinal is a type of large cardinal. It is a weakening of the notion of a supercompact cardinal. Formal definition If lambda; is any ordinal, kappa; is lambda; strong means that kappa; is a cardinal number and there… … Wikipedia
Non-measurable set — This page gives a general overview of the concept of non measurable sets. For a precise definition of measure, see Measure (mathematics). For various constructions of non measurable sets, see Vitali set, Hausdorff paradox, and Banach–Tarski… … Wikipedia
Universally measurable set — In mathematics, a subset A of a Polish space X is universally measurable if it is measurable with respect to every complete probability measure on X that measures all Borel subsets of X. In particular, a universally measurable set of reals is… … Wikipedia